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Statistics of shadowing time in nonhyperbolic chaotic systems with unstable dimension variability
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Severe obstruction to shadowing of computer-generated trajectories can occur in nonhyperbolic chaotic
systems with unstable dimension variability. That is, when the dimension of the unstable eigenspace changes
along a trajectory in the invariant set, no true trajectory of reasonable length can be found to exist near any
numerically generated trajectory. An important quantity characterizing the shadowability of numerical trajec-
tories is the shadowing time, which measures for how long a trajectory remains valid. This time depends
sensitively on initial condition. Here we show that the probability distribution of the shadowing time contains
two distinct scaling behaviors: an algebraic scaling for short times and an exponential scaling for long times.
The exponential behavior depends on system details but the small-time algebraic behavior appears to be
universal. We describe the computational procedure for computing the shadowing time and give a physical
analysis for the observed scaling behaviors.
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[. INTRODUCTION stable dimension variabilijy then shadowing of numerical
trajectories for appreciable lengths of time becomes unlikely
The validity of numerical computations is a fundamental[7—10|.
problem in chaotic dynamical systems because of their sen- A key quantity to characterize shadowing dynamics is the
sitive dependence on initial conditions. Given a chaotic sysshadowing timer, which measures for how long a numerical
tem, one can compute a numerical trajectory, starting from &ajectory remains valid in the sense that it stays close to a
random initial condition, and ask whether there is a true tralrue trajectory. For a given trajectory, this time can be com-
jectory of the system dynamics, starting from a slightly dif- puted by monitoring the evolution of th@intwise shadow-
ferent initial conditior[1] that stays in a small neighborhood Ing distance the local phase-space distance between a given
of the numerical one. This is the problem stiadowing of ~numerical trajectory and a true trajectory. For hyperbolic sys-
numerical trajectoriesFrom a different standpoint, one can t€ms, the shadowing time is infinite for numerical trajectories
also ask, by computing an ensemble of numerical trajectoffom random initial conditiong4]. For nonhyperbolic sys-
ries, whether the statisticékrgodio averages computed us- tems with tangencies, the average shadowing time is in-
ing these trajectories are approximations of the true ones ofersely proportional to the square root of the computer
the system. This is the problem shadowing of statistical roundoff [5]. Nonhyperbolicity caused by unstable dimen-
averages[2,3]_ Depending on the Specifics of the pr0b|em sion variability, common in high-dimensional chaotic Sys-
that one is dealing with, either the former or the latter prob-tems with multiple positive Lyapunov exponents, has begun
lems, or both, can be important. This paper concerns th& be understoofi7—10. Current result$7-9] indicate that,
fundamental dynamical process involved in the first problemfor such a system, the shadowing distance typically increases
Existing results on shadowing of numerical trajectorieseXponentially after encountering a glitch point where a
build upon the important mathematical notion of hyperbolic-change in the unstable dimension occurs, then decreases ex-
ity. Roughly speaking, the dynamics is hyperbolic on a chaPonentially in hyperbolic regions, and so on, with a lower
otic set if, at each point of the trajectory, the tangent space igound determined by the computer roundoff. The switches
split into expanding and contracting subspaces and thBetween the expanding and contracting behaviors occur ran-
angles between them are bounded away from zero. Furthefomly in time, suggesting that the behavior of the logarithm
more, the expanding subspace at each point evolves into tHeof the pointwise shadowing distance mimics that of a ran-
expanding one along the trajectory and the same is true fcgiom walker. A calculation of the Corresponding first-passage
the contracting subspace. Otherwise the set is nonhyperbolitme gives the average shadowing time, which depends on
The following results have been established regarding shadbe system details in the following manner:
owing: (1) hyperbolic chaotic systems permit shadowing of )
numerical trajectories for an infinitely long tinid]; (2) for (1)~ 2me”, (1)
nonhyperbolic chaotic systems in which the splitting into the
expanding and contracting subspaces is continuous but thevéhere 6 is the computer roundoff, aneth>0 ando are the
are tangencies at which the two subspaces coincide, shadowean and standard deviation of the time-one Lyapunov ex-
ing can be expected for a finite amount of time that dependponent that is closest to zefal].
on the computer roundoff err§,6]; and(3) if a continuous The aim of this paper is to report our findings concerning
splitting of the subspaces is not possible, i.e., if the dimenthe shadowing dynamics for nonhyperbolic systems with un-
sions of the expanding and contracting subspaces are netable dimension variability. We focus on the shadowing time
constant on different parts of the invariant sealled un- 7. Due to chaos, this time depends sensitively on initial con-

1063-651X/2004/6@)/01621310)/$22.50 69016213-1 ©2004 The American Physical Society



Y. DO AND Y.-C. LAI PHYSICAL REVIEW E 69, 016213 (2004

ditions and thus can be regarded as a random variable for Il. BASIC CONCEPTS IN SHADOWING DYNAMICS
trajectories from different random initial conditions. Our
principal result, which concerns the probability distribution
®(7) of the shadowing time, is thab(r) contains both The dynamics on an invariant set is hyperbolic if, at each
universal and nonuniversal scaling features. For smatil- ~ Point of the trajectory, the tangent space can be split into
ues the distribution exhibits a universal algebraic scaling®Panding and contracting subspaces and the angle between
while the distribution is exponential for large values of ~theém is bounded away from zero. Furthermore, the expand-
The exponential distribution depends on system details. 19 subspace evolves into the expanding one along the tra-
particular, we have jectory and the same holds for the contracting subspace.
The existence of a true trajectory near any numerical tra-
jectory in hyperbolic systems can be understood by noting
732 forsmall that, along the stable direction, the distance between the true
(2 and numerical trajectories decreases exponentially in forward
time, while along the unstable direction, the distance de-
creases exponentially in backward time. Given a numerical
trajectory, a true trajectory can be found to stay in the neigh-

vn\gherne thti ctonfst;’:m:]lsm?ystergn lti:iependter;t]. Tk\l/\tztﬁcah:q[ IZ\IN borhood of the numerical one. Specifically, consider the set
1eans that for nonnyperbolic - systems unstabies,¢ phase-space vectors that represent the difference between
dimension variability, shadowing of numerical trajectories

~the true and numerical trajectories. Then, the stable compo-

can be expected onl_y in ghort time becaus_e longer shadovv_lr}gem of the vector can be constructed by following the dy-
times are exponentially improbable. A brief account of thls’namics in the stable direction starting from the initial condi-

work has appeared recenfly2]. tion, which decreases exponentially in forward time, while

We shall presen_t numenca_l results tq s.upport the scglm e unstable component can be located by following the un-
law (2) and a physical analysis to explain it. The analysis is

TS : . “stable dynamics starting from the end point of the numerical
based on the similarity between the dynamics of shadowing _. . ) . .
. . ajectory, which contracts exponentially in backward time.
and that of a random walk, briefly described as follows.

When a trajectory moves on the attractor, it encounters botﬁ:omblnlng the stable and unstable components of the differ-

hyperbolic region, where it converges to a true trajectory,ence vectors along the numerical trajectory yields a true tra-

and nonhyperbolic region with unstable dimension variabil/€Ctory that stays withird [4]. All these can be done because
ity in which the numbers of local stable and unstable direcOf the hyperbolic structure of the dynamics. _

tions change. Thus, in hyperbolic regioh, “walks” ran- The shadowing lemma of Anosov and Bowfetj, which
domly toward the reflecting barrier because, in this caseholds for hyperbolic systems, can be extended to nonuni-
shadowing theory guarantees the existence of a nearby triiermly hyperbolic system§17].

trajectory [4]. Insofar as the trajectory is in a hyperbolic

region, on average, the pointwise shadowing distance can be B. Shadowing in nonhyperbolic systems with tangencies
adjusted in such a way that it decreases exponentially in time

toward the lower bound>. When a nonhyperbolic reg'ond_systems, for which tangencies are the sole source of honhy-

with unstable dimension variability is encountered, the su rbolicity. is r nably well understops6]. Near a tan-
den change of an expanding direction into a contracting oné?e olicity, IS reasonably well Undersiopoib]. Near a tan-
ency, the dynamics is neither expanding nor contracting,

or conversely, immediately destroys the consistency of thd , . .
adjustment process, and the pointwise shadowing distandg@Uch like what happens near a critical point of a one-
tends to increase exponentially. In tEespace, there is an dimensional map where the derivative is zero. Tangencies

excursion away from the reflecting barrier. The Fokker-e€ncountered .in low-dimensional chaotic systems are typi-
Planck equation, which describes the evolution of the probcally quadratic. The breakdown of shadowing can thus be
ability distribution of the walker's motion, in combination intuitively demonstrated by considering the logistic map:
with the proper initial and boundary conditions, can beXn+1=4Xn(1—Xp). Anumerical trajectory can be kicked out
solved to yield the scaling la2). of the unit interval[0,1] and iterates tx= — if it comes

In Sec. II, we review the basic concepts essential for unwithin about./s of the critical pointx=1/2. For an ergodic
derstanding the shadowing dynamics. In Sec. Ill, we detail 4rajectory, the probability density function is smooth near the
procedure to compute the shadowing distance and the shagkitical point. The probability for the breakdown of shadow-
owing time. In Sec. IV, we present numerical results withing is thus proportional to/8, which means that the time
two examples: a three-dimensional map that we have correquired for this to happen is proportional 8 *2 Thus, if
structed to specifically address the dynamics of shadowing ithe computer roundoff i§~ 106, the length of the numeri-
high-dimensional chaotic systems, and the kicked doubleeal trajectory for which shadowing is guaranteed is abofit 10
rotor map[13] that has been a prototype model for addressiterations. For a continuous-time flow, this means that nu-
ing the issues of unstable dimension variability and shadowmerical trajectories containing less than® Ifassings of a
ing [7,9,14. In Sec. V, we present a physical theory to Poincaresurface of section, or about d®scillations, are
explain the numerical observed scaling behavior of the shadeliable. Such a time can be considered sufficient for many
owing time. A brief discussion is presented in Sec. VI. practical computations.

A. Shadowing in hyperbolic systems

@(n~ exp—ar) forlarger,

Shadowing of numerical trajectories in nonhyperbolic
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C. Unstable dimension variability and breakdown For hyperbolic systems, the pointwise shadowing distance
of shadowing is on the order ofs because every pseudotrajectory is shad-

wable, andB is of order 1. For nonhyperbolic systems,

The breakdown of shadowing in the presence of unstablg h Wi hadowing dist h th
dimension variability was first pointed out by Abraham and owever, the pointwise shadowing distance can reac €
size of the entire attractor, ariél can be on the order of the

Smale[15], who constructed a simple ergodic invariant set in;
RP with two saddle fixed pointsA and B, which have one inverse of the computer roundoff error.
and two local unstable directions, respectively. Trajectories
in the invariant set can spend arbitrarily long times near each
point. Imagine a ball of initial conditions starting near The brittleness3 generally is not computable, as the true
which has a D—1)-dimensional stable subspace. As thetrajectory is unknown. Theest brittlenessis a first-order
map is iterated, the ball of initial conditions is stretched into@Pproximation to the brittleness, which can be computed
a thin curve along\V“(A). The corresponding numerical tra- Without a precise knowledge of the true trajectory. Given a
jectories lie within & of this thin curve. Consider a phase Pseudotrajectorypyin_o., the refinement proceduf&] de-
space oD =3 dimensions. In the plane spanned by the twotailed below can be used to find an approximately true tra-
stable directions a, all computer-generated trajectories lie /€Ctory, say{yniy_o. The test brittlenes8 is defined a3

in a circle of radiusd centered af\. That both fixed points =Ma%[Pn—Ynl/8. The idea of the refinement method is to

are embedded in the same ergodic invariant set means thg@Tect the pseudotrajectory at each point in a proper way so
some time later, trajectories ne&wisit a neighborhood o.  that the resulting trajectory is closer to a true traject@y

When this happens, the trajectories begin to separate anAESS noisy. Let ¢, be the correction vector such that=p,
¢,. For the corrected trajectofy,},—, to be as close as

the new unstable direction. Along this direction, numerical ) -
and true trajectories separate from each other exponentialfOSSiPIe 10 a true trajectory, we requit/n) =Yn+1=Pn+1
with time at a rate determined by the eigenvalue associate Cn+1- ASS“T“'”Q. that_the correction vector is small, a first-
with the fixed pointB. The numerical trajectories no longer order approximation yields
shadow the true trajectories Bt The switching fromA to B Prs1+Cre1=F(PntC)~f(py)+D-f(pr)-Cys  (4)
is called aglitch.

A characteristic feature of a chaotic invariant set is that arwhereD-f(p,,) is the Jacobian matrix of partial derivatives
infinite number of unstable periodic orbits are embedded irevaluated ap,. Let e,=p,—f(p,_1) be the error at thath
it. If the chaotic set has unstable dimension variability, typi-step of the iteration. Thef(p,) =p,+;+€,+1, which, when
cally the infinite set of periodic orbits consists of subsetssubstituting in Eq(4), yields
with distinct unstable dimensions. Each subset has an infinite
number of orbits that are dense on the invariant set. Thus,

fchere are infinitely many glitches. In general,_numerical U@-rhis jteration scheme is unstable becalsé has unstable
jectories cannot be shadowed by any true trajectory for Iongeigenspaces at each point. Instead, we decompose the tan-

gent space of the Jacobian matixf(p,) into stable and

B. Test brittleness

Chr1~D-f(p,)-C,te:q for Nn=0,... N—=1. (5

IIl. PROCEDURE TO COMPUTE THE SHADOWING unstable subspaces. In the stable subspace, forward iterations
DISTANCE AND TIME yield the stable component @f, while in the unstable sub-
A. Pointwise shadowing distance and brittleness space, backward iterations yield the unstable component of

. , . ¢, . For a given pseudotrajectory of length ¢ 1), the com-

_ For nonhyperbolic invariant set, a way to quantify the pination of the results from the forward and backward itera-
w_olahon of cc_)ntmu_ous shadowmg is to examine the _po'm'tions then yields the required correction vectr. These
wise shadowing distance. Lgpn},—o denote a numerical correction vectors are used to approximate the corresponding
trajectory, or apseudo-trajectoryof lengthN+1. Because pointwise shadowing distances.
of the computer roundoff, typically there is a small differ- = The refined trajectonfy,}\_, to be computed contains
ence betweemp, ., andf(p,) forn=0,1,... N—1, where (N 1)p unknowns, while Eq(5) contains onlyND equa-
f(pn) is the image of the poinp, under the true dynamics. jons. Thus, to guarantee a unique solutibrhoundary con-

Let 5 be an upper bound for all these errors along thegitions must be specified for the refinement process. If there

pseudotrajectory, i.e.|pns1—f(pp)|<d, for n=0,... N 5repg andD,, stable and unstable directions, respectively,
—1. A true trajectory{x,}n-o, on the other hand, satisfies along the pseudotrajectory, then we choogeto be in the
f(Xn) =Xn+1, for n=0,... N—1. The true trajectorye = Dgdimensional stable subspacemt and ¢, to be in the

shadows the pseudotrajectory if |[x,—p,/<e for n D-dimensional unstable subspace @ which together
=0, ... N. The quantity|x,—p,| is the pointwiseor local  give D additionalD boundary condition§5]. These bound-
shadowing distancf?,9]. The brittlenessB of a pseudotra- ary conditions guarantee that outside the time intef@al ],
jectory{pn},'}‘=0 is the ratio of the shadowing distance over the correction vectoc decreases to 0 exponentially, so that
the magnitude of the one-step error, the refined trajectory converges to the true one. In particular,
sincecy is in the stable subspace pf;, it converges td)
under the forward map for time beyorid, and likewise,
sincec, is in the unstable subspace @4, it will approach

_ (shadowing distange max,|pp— Xl 3
~ (one-steperrofy 5 ' ©®
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asymptotically td), too, under the inverse map for time steps
preceding 0. Let,=s,+u,, wheres, andu, are the stable
and unstable components gf, respectively. The boundary
conditions ares,=0 anduy=0. Under these Eq5) yields

the following set of iterative schemes for solving the stable
and unstable components of the perturbation vector along the
entire pseudotrajectory:

Sn+1:Sp[D'f(pn)'$1+ 5n]u
un:up[D'fil(anrl)'(un+1_5n+1)]r (6)

forn=0, ... N—1, whereS, andi4, are the projection op- ’
erators into the stable and unstable subspaces, respectively ol |
which can be determined by the spans of the stable and un- 4 5 é :
stable subspaces at every point of the pseudotrajectory. The o
computation of the stable and unstable subspaces can be car-
ried out straightforwardly16] by using the standard Gram-  FIG. 1. For the three-dimensional map Kd), (a) a bifurcation
Schmidt orthonormalization procedure contained in, for in-diagram, andb) a Lyapunov bifurcation diagram. We see that bi-
stance, the algorithm for computing the Lyapunov spectrunﬁ”rcaﬂon to high-dimensional chaos with two pos.mve L_yapunc_)v
[18]. After all the correction vectors are computed, the tes€XPonents occurs at=a.~6.0. Severe unstable dimension vari-
brittleness is obtained=max,/c,|/|e,]. ability and the consequent breakdown of shadowing can be ex-
The refinement procedure relies on a continuous deconf2e¢ted fore nearac.
position of the tangent space along the_ pseudotrajectory. Thceur [19] for a near the critical valuex.. The portraits of
Sr’:z;tg(]; ;%T}E’vl\]"tses ;ﬁ;:jeoﬁ%g \(/j?scttgrﬁ;(eﬁgal;iztrllﬁet(;]ebye?rt:e typical low- and high-dimensional chaotic attractors are
size of the chaotic invariant set in the phase space. As hown in Figs. @ and_Z{b) for 0‘_.4'0 anda=8.0, respec-
result, the magnitude of the test brittleness should be of the'VEIy' T_h_e low-dimensional chaotic attractor appears to have
order of the inverse of the computer roundoff. If there js>ome v!5|b|e structures of unstable foliations, while the P'gh'
unstable dimension variability, the stable and unstable prog'onr]r?,,n:r'%nzl accr:]:?itlllicn attractor looks apparently more “ran-
jection matrices can be extremely ill conditioned, resulting in Figures ga)—S(c) sgﬁow the evolution of the pointwise
extraordinarily large correction vectors. Despite this difﬁ'shadowing distance for three different parameters. We see
culty, we can take the viewpoint that very large values of the '
test brittleness suggest breakdowns of shadowing at various
points of the pseudotrajectory and, the refinement scheme .54
provides a numerical way to find glitches on the chaotic set.

IV. NUMERICAL EXAMPLES Z 0~

A. A three-dimensional map

We have constructed a three-dimensional map for which, -0.5-
in a convenient parameter range, there is a transition to high- 1
dimensional chaotic attractors with two positive Lyapunov
exponents and consequently severe unstable dimension vari-
ability near the transition. The map reads

Xny1=C0q ax,+0.6ay,), : S, o

Yn+1= 0.6z, cogy,—z,),
Zny 1= 0.1ax, sin(1-z,), (7)

where «a is the bifurcation parameter. Figure&jland ib)
show a bifurcation diagram and the Lyapunov spectrum ver- 5 i e T 0
susa, respectively. In the parameter range considered, there y Y 5= ” 0 X

is at least one positive Lyapunov exponéexcept for peri- -

odic windows. Transition to high-dimensional chaos occurs  F|G. 2. For the three-dimensional map E@), portraits of(a) a
ata= a,~6.0, where the second largest Lyapunov exponenfow-dimensional chaotic attractor with one positive Lyapunov ex-
becomes positive. We thus expect severe unstable dimensi@onent fora=4.0, and(b) a high-dimensional attractor with two
variability and consequently breakdown of shadowing to oc-positive exponents forr=8.0.
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[ (a)

10000

0 5000 n 10000
FIG. 4. (a), (b) For the three-dimensional map E{), probabil-

ity distributions of the shadowing time for «=6.0 (thin solid

line), «a=6.2 (crosses+ dashed ling and «=6.4 (circles + thin

solid line). In (a), the distributions are shown on a logarithmic scale,

indicating a universal algebraic scaling behavior with exponent

—3/2 for small values of-. In (b), the distributions are plotted on a

i Al semilogarithmic scale, revealing an exponential decaying behavior

0 5000 10000 that depends on the system details.

FIG. 3. For the three-dimensional map @), the pointwise  first rod, of lengthl,, rotates about the fixed pivét;. The
shadowing distancs, computed from a trajectory of length 4ébr second rod, of lengthl2, pivots aboutP,, which moves. A
(@ a=6.0, (b) @=6.2, and(c) «=6.4. The dashed line corre- Massm is attached aP,, and two masses,/2 are attached
sponds the threshold=10"°. to each end of the second rod. The end of the second rod
(P3) receives vertical periodic impulse kicks of perid@and

that the distances can be large for 6.0 (a). For a=6.2 (b) amp!itudep. The rotors move in the horizo.ntal plane SO that
and a=6.4 (c), the distances are relatively smaller, as un-gravity can be neglected. Friction at the pivéts andP; is
stable dimension variability is relatively less severe becausBroportional to the angular velocitydé,(t)/dt and

the second largest Lyapunov exponent is not as close to zeff2(t)/dt—d6,(t)/dt with proportionality constants; and
as in the case ak=6.0. The shadowing time can be conve- V2 re_spectlvely. Due to the_ periodic forcing, the set of dif-
niently computed as the time interval during which the point-férential equations describing the double rotor can be re-
wise shadowing distance stays less thasl. With the duced to the foIIqwmg four-dl_men3|onal map by using the
seemingly random variations in the pointwise shadowing disStroboscopic sectioning techniqls]:

tance, the shadowing time can be regarded as a random vari- X M-Y. .+ X

able. To obtain the probability distributions of the shadowing ( ”*1) _( noom ) ,
time, we construct histograms of the values of time intervals

7 during which the shadowing distance is less than the
thresholde=10"°. Figure 4a) shows, on logarithmic scale, whereX=(x",x*)T, Y=(y"y?)", x* andx* are the angular
the probability distributions of shadowing time far=6.0,

a=6.2, anda=6.4. We see that, for smalt values the Py 0
distributions tend to collapse onto a single line of slope m2/2
—3/2, indicating a universal algebraic scaling. For large val-

ues ofr, the distributions are apparently exponential, as can

be seen in the corresponding plots on a semilogarithmic scale

in Fig. 4(b). We have observed numerically similar behaviors

for other values ofx nearag.

)

Yn+1 L'Yn+G(Xn+1)

Periodic m
Forcing
B. The kicked double-rotor map
We consider a physical system, the kicked double rotor,

which has been a paradigmatic model for addressing high-
dimensional chaotic phenomef&3], particularly the shad-

owing problem[7]. The kicked double-rotor map describes m2/2
the time evolution of an idealized mechanical system con-
sisting of two thin, massless rods as shown in Fig. 5. The FIG. 5. The kicked double-rotor system.
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10000

10000

6 7 8 9 10 ©

FIG. 6. (a) Bifurcation diagram andb) Lyapunov exponent vs o107
the kicking parametep for the double-rotor map E@8). Transition
to low-dimensional chaos with one positive Lyapunov exponent,
through a cascade of period-doubling bifurcations, occurp at 10
~6.7. Bifurcation to high-dimensional chaos with two positive 0 5000
Lyapunov exponents occurs gt= 8.0, at which there is severe un- n

10000

stable dimension variability.

positions of the rods at the instant of thih kick, andy* and

FIG. 7. For the double-rotor map E), the pointwise shad-
owing distances, computed from a trajectory of length 4.6or (a)
p=28.0, (b) p=8.5, and(c) p=9.0. The dashed line corresponds to

y?2 are the angular velocities of the rods immediately after thehe thresholde=10""°.

nth kick. L andM are constant 2 matrices defined by

2 2 N
eMiT—1
L=2> W;eNT, M= W,———, 9)
=1 =1 Aj
where
a b d —b
Wisly o) Weml_p 4 )
1 V1 1 V1 Vo
a—2(1+A>, d—z(lA), b—*K,

ham 5 (nt=d), A=TEAE (10
1,2 51T ve=2), VT avs.

The functionG(X) is given by

[a sinxl)
G(x)_(cz sinx?/’ (D

where c;=pl,/1, c,=pl,/1, and I=(m;+my)l3=m,l2.
For illustrative purposes we fix=T=I=m;=m,=1,=1
andl,=1/\/2. These parameters yield

0.241427724 0.272608 988
- 10.272608938 0.514 036 662

0.485963338 0.213354401
M= 0.213354401 0.699317 789

We choose the kicking strengghas the bifurcation param-
eter. A typical bifurcation diagram is shown in Figag and
the Lyapunov spectrum of the attractor verguis shown in
Fig. 6b). As p is increased, a cascade of period-doubling
bifurcations occurs, which leads to low-dimensional chaotic
attractors with one positive Lyapunov exponenpat6.7. A
large periodic window occurs for 7=0p=<7,5. At p~8.0,
the second largest Lyapunov exponent becomes positive,
leading to high-dimensional chaotic attractors with two posi-
tive exponents fop=8.0. We thus expect severe unstable
dimension variability and breakdown of shadowing fer
~8.0[7,14,19. As p is increased from 8.0, unstable dimen-
sion variability becomes less severe.

Figures Ta)—7(c) show the pointwise shadowing distance
s, as a function ofn, computed from a trajectory of length
10* on the chaotic attractor fop=8.0, p=8.5, andp
=9.0, respectively. Because of the severe unstable dimen-
sion variability for p=28.0, numerical trajectories cannot be
shadowed for appreciable lengths of time. This situation is
reflected in the variations of the pointwise shadowing dis-
tance over many orders of magnitude. The huge values of the
pointwise shadowing distance arise from ill conditioning of
the refinement technique, due to the sudden and frequent
changes in the dimensions of the stable and unstable sub-
spaces along the trajectory. In contrast, for 8.5 andp
=9.0, there are time intervals in which the pointwise shad-
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random walk model. To refresh, a trajectory encounters both
approximately hyperbolic regions and regions with glitches.
The shadowing dynamics in the hyperbolic regions are
equivalent to a random walk toward the reflecting barrier
corresponding to the computer roundoff. As we have de-
scribed, an approximation of the true trajectory can be found
with a refinement technique that adjusts the points on the
trajectory in a consistent manner along the stable and un-
stable directions. As a result, insofar as the trajectory is in a

0 hyperbolic region, on average, the pointwise shadowing dis-
,_10 : ' (b) tance decreases exponentially with time toward the lower
sl boundés. When a glitch occurs, the consistency in the trajec-
o tory adjustments, which can be achieved in hyperbolic re-

10 gions, is immediately destroyed, causing the pointwise shad-
owing distance to increase in an exponential manner. In the
e e o walker’s space, it is equivalent to an excursion away from
1078 iy . the reflecting barrier.
0 5000 T 10000 We are thus led to consider the following model:
FIG. 8. (a), (b) For the double-rotor map Ed8), probability Sn+1=W,Sy, (12

distributions of the shadowing time for p=p,=8.0 (thin solid
line), p=8.5 (crosses+ dashed ling and p=19.0 (circles + thin wheres, stands for the shadowing distance at tim@ndw,,
solid line). In (a), the distributions are shown on a logarithmic scale, is a random variable that describes the expansion or contrac-
indicating a universal algebraic scaling behavior with exponent tion of the local shadowing distance at timelntroducing a
—3/2 for small values of-. In (b), the distributions are plotted on a new variabley,=log;ps,, We obtain
semilogarithmic scale, indicating an exponential decaying behavior.

Yn+1=Yntv+2z,, (13

owing distances are much less than 1, and the fluctuations ivr\]/here —(log;oW,) is the drift of the random walk and,
the distances are much smaller than thosepfer8.0, indi- v={10910Wn

: : =log;gw,—{log;oW,) is a zero mean random variable. Ap-
icnatEgg Iees(z)si\(/)?rigkés;ru;::gr;)s:tg Shatggm[gés dsrllgr\ggst proximately [20], we can write down the Fokker-Planck

Lyapunov exponent lies away from 0 and, in fact, the distri-equat'on

but!ons of its finite-time approximations have much smaller JP P D 2P

variance[7]. — =yt (14)
Figure 8a) shows, on a logarithmic scale, fer=10"°, ot ay 2 py?

the histograms of shadowing time far=8.0 (thin solid _ S _
line), p=8.5 (crosses+ dashed ling and p=9.0 (circles whereP(t,y) is the probability distribution for observing the
+ thin solid lin®, respectively. We observe that for< 7, walker at distancg at timet, and the diffusion coefficient is
~10?, the distributions(7) appear to be algebraic, while given by D=(z%). For computing the probability distribu-
for r>14, ®(7)’s decrease rapidly with~. The decaying tion of the shadowing time, the maximum relevant pointwise
behavior of®(7) for 7>, appears to be exponential, as sShadowing distance ig,=logy€, the threshold distance
shown on a Sem”ogarithmic scale in F'qu The exponen- below which ShadOWing is considered to hold. There is thus
tial decay is system dependent in the sense that its rate dab absorbing boundary condition wf,,
pends on the parametpr In particular, the rate is large for P _o
p=238.0, indicating that it is highly improbable to have a long (t.Yn) =0.
shadowing time, due to the severe unstable dimension varil-
ability at this parameter value. As is increased from 8.0,

(15

he shadowing distance cannot be smaller than the computer
roundoff 8, which stipulates a reflecting boundary condition

the degree of unstable dimension variability is reduced SQi logy, 5:

that the exponential decay i (7) becomes slower. Again, o

the remarkable feature is that the algebraic decay for small D dP

appears to bauniversal with the scaling exponent 3/2, J(t,y)E—VP-i-Ed—y} =0. (16)

which holds for many other values qf in the interval y=logyod

[7,8,10 that we have examined. ) ]
Assuming the walker starts at an arbitrary place d@<y,

<y, att=0, we have the initial condition
V. PHYSICAL THEORY FOR STATISTICS
OF SHADOWING TIME P(0y)=6(y—Yo). (17)

To explain the universal and nonuniversal features inUnder these boundary and initial conditions, the Fokker-
shadowing, as exemplified by Figs. 4 and 8, we consider &lanck equation can be solvgil], which gives the follow-
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hyperbolic regions, leading to an appreciable amount of drift
in the random walk model. This is somewhat different from
the diffusion model used in Reff9].

(2) The solution to the Fokker-Planck equation, under the
boundary and initial conditions, gives satisfactory explana-
tions for our numerical results. The setting of the initial and
boundary value problem is in fact quite standgd], and it
also appears in other contexts such as noisy on-off intermit-
tency [23,24]. Our results are completely consistent with
those in that context.

(3) Between the universal scaling #( 7) (algebrai¢ and
the nonuniversal scalingexponential regimes, there is a
crossover regime i where both the algebraic and exponen-
tial contributions are important. This is the so-called “shoul-
der regime” in noisy on-off intermittency23]. The cross-
over time is approximately given byy~D [In(e/8)T,
which defines the time scale of diffusig@4]. There is an-
other time of interest, which is the drift time/| ! In(e/6).
These represent the typical times for the shadowing distance
to reach the threshold from the level of computer roundoff

FIG. 9. For the double-rotor map E¢B), (a) draft v and (b) due to diffusion and dnift, respectively.

diffusion D coefficients.
ing probability distribution for the first-passage time of the VI. DISCUSSION

walk acrossyyy (the shadowing time In summary, we have uncovered universal and nonuniver-

sal features in the shadowing dynamics of nonhyperbolic
chaotic systems with unstable dimension variabilig2].

Our results provide a fairly detailed understanding of the
fundamental problem of shadowing in terms of statistical

—3/2 ;{ V2T>
exg — ==/,
V27D 2D
haracterizations. Our theoretical explanation suggests that

where the proportional constant depends on the choice of ﬂf%e shadowing problem shares the same dynamical mecha-
initial conditiony,. For small values of, the dependence of nism as that for on-off intermittency under noise

®(7) on 7 is mainly algebraic with the universal S(_:aling The problem of shadowing is closely related to a more
zzggnienm l;);:\iizo.r Ii:g(le;r?jgr:q/ﬁ:;t?sovtit;hti:)r(g; nei?/tel,-i”)t; fundamental question: is mathematical modeling a meaning-
ying T 9 Y ful approach for high-dimensional chaotic systems with un-

— .2 H H
Ze_ ’; r< ézegge ZP?hS: eareoalem.sglarl;g gisglt:t;% %qe)t.ajll-g?:an table dimension variability? The relation between shadow-
P xp ! Y : g and modeling can be stated more precisgBb|.

?zfr?]ee?:?sci l:;{] é:%mopnut;ngytsr: n?eppzfrg?ne(;;? 3{/ ;hftiang|‘;f#§t'°gpfj€§enerally, a necessary requirement for a model is robustness
- . . ’ under small perturbations. One can generate outputs from
proxmately,_ th_e average drift depends inversely on the P%wo versions of the model using slightly different parameter
rameter variationfv|~1/(p—po), for p>po~8.0, and the 1,5’ o1 initial conditions. Chaotic processes depend sensi-
d|_ffu5|on coefficientD is relatively constant, as shown in tively on both. A model is considered robust if the sets of all
Fig. 9. . possible outcomes of two slightly different versions of the
A few remarks are n orde.r. . . model are similar. Difficulties arise when trajectories from
(1) The average drift;, which 'S a key parameter in the o \ersion of the model are not shadowable by trajectories
random-walk model, decreases,ﬁ_ss increased fronpo. N from another, as occurs in the presence of unstable dimen-
fact, the value Of. the average dr.'f.t appears to be maximung;q, variability. In such cases, the model may be useless for
when unstable d!mensmn variability is most Severe. Th|s ISmaking detailed predictions about the behavior of particular
expected from Figs. (8-7(c), the plots of the logarithmic initial conditions, although statistical predictions may still be

poir&twise slrllad(;wir:jgﬁdistancel, or ihe orl]isplacement (r)]f e ossible{14]. The results of this paper shed light on for how
random walker for different values gi, where we see that |54 gne can expect solutions from a model to be approxi-
the apparently random evolution of the distance indeed exr'nately valid[26].

hibits much larger drift fopp=py, compared with other val-
ues ofp. Dynamically, this happens due to the existence of
the maximally possible number of glitches on the attractor
for p=py when unstable dimension variability is most se-
vere. As a result, the pointwise shadowing distance suffers a We thank Professor T. Sauer for valuable comments. This
relatively large number of expanding phases as comparedork was supported by AFOSR under Grant Nos. F49620-
with the number of contracting phases experienced in th®8-1-0400 and F49620-03-1-0290.
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