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Statistics of shadowing time in nonhyperbolic chaotic systems with unstable dimension variability
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Severe obstruction to shadowing of computer-generated trajectories can occur in nonhyperbolic chaotic
systems with unstable dimension variability. That is, when the dimension of the unstable eigenspace changes
along a trajectory in the invariant set, no true trajectory of reasonable length can be found to exist near any
numerically generated trajectory. An important quantity characterizing the shadowability of numerical trajec-
tories is the shadowing time, which measures for how long a trajectory remains valid. This time depends
sensitively on initial condition. Here we show that the probability distribution of the shadowing time contains
two distinct scaling behaviors: an algebraic scaling for short times and an exponential scaling for long times.
The exponential behavior depends on system details but the small-time algebraic behavior appears to be
universal. We describe the computational procedure for computing the shadowing time and give a physical
analysis for the observed scaling behaviors.
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I. INTRODUCTION

The validity of numerical computations is a fundamen
problem in chaotic dynamical systems because of their s
sitive dependence on initial conditions. Given a chaotic s
tem, one can compute a numerical trajectory, starting fro
random initial condition, and ask whether there is a true
jectory of the system dynamics, starting from a slightly d
ferent initial condition@1# that stays in a small neighborhoo
of the numerical one. This is the problem ofshadowing of
numerical trajectories. From a different standpoint, one ca
also ask, by computing an ensemble of numerical traje
ries, whether the statistical~ergodic! averages computed us
ing these trajectories are approximations of the true one
the system. This is the problem ofshadowing of statistica
averages@2,3#. Depending on the specifics of the proble
that one is dealing with, either the former or the latter pro
lems, or both, can be important. This paper concerns
fundamental dynamical process involved in the first proble

Existing results on shadowing of numerical trajector
build upon the important mathematical notion of hyperbol
ity. Roughly speaking, the dynamics is hyperbolic on a c
otic set if, at each point of the trajectory, the tangent spac
split into expanding and contracting subspaces and
angles between them are bounded away from zero. Fur
more, the expanding subspace at each point evolves into
expanding one along the trajectory and the same is true
the contracting subspace. Otherwise the set is nonhyperb
The following results have been established regarding sh
owing: ~1! hyperbolic chaotic systems permit shadowing
numerical trajectories for an infinitely long time@4#; ~2! for
nonhyperbolic chaotic systems in which the splitting into t
expanding and contracting subspaces is continuous but t
are tangencies at which the two subspaces coincide, sha
ing can be expected for a finite amount of time that depe
on the computer roundoff error@5,6#; and~3! if a continuous
splitting of the subspaces is not possible, i.e., if the dim
sions of the expanding and contracting subspaces are
constant on different parts of the invariant set~called un-
1063-651X/2004/69~1!/016213~10!/$22.50 69 0162
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stable dimension variability!, then shadowing of numerica
trajectories for appreciable lengths of time becomes unlik
@7–10#.

A key quantity to characterize shadowing dynamics is
shadowing timet, which measures for how long a numeric
trajectory remains valid in the sense that it stays close t
true trajectory. For a given trajectory, this time can be co
puted by monitoring the evolution of thepointwise shadow-
ing distance, the local phase-space distance between a gi
numerical trajectory and a true trajectory. For hyperbolic s
tems, the shadowing time is infinite for numerical trajector
from random initial conditions@4#. For nonhyperbolic sys-
tems with tangencies, the average shadowing time is
versely proportional to the square root of the compu
roundoff @5#. Nonhyperbolicity caused by unstable dime
sion variability, common in high-dimensional chaotic sy
tems with multiple positive Lyapunov exponents, has beg
to be understood@7–10#. Current results@7–9# indicate that,
for such a system, the shadowing distance typically increa
exponentially after encountering a glitch point where
change in the unstable dimension occurs, then decrease
ponentially in hyperbolic regions, and so on, with a low
bound determined by the computer roundoff. The switch
between the expanding and contracting behaviors occur
domly in time, suggesting that the behavior of the logarith
Z of the pointwise shadowing distance mimics that of a ra
dom walker. A calculation of the corresponding first-passa
time gives the average shadowing time, which depends
the system details in the following manner:

^t&;d22m/s2
, ~1!

whered is the computer roundoff, andm.0 ands are the
mean and standard deviation of the time-one Lyapunov
ponent that is closest to zero@11#.

The aim of this paper is to report our findings concerni
the shadowing dynamics for nonhyperbolic systems with
stable dimension variability. We focus on the shadowing ti
t. Due to chaos, this time depends sensitively on initial c
©2004 The American Physical Society13-1
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ditions and thus can be regarded as a random variable
trajectories from different random initial conditions. O
principal result, which concerns the probability distributio
F(t) of the shadowing time, is thatF(t) contains both
universal and nonuniversal scaling features. For smallt val-
ues the distribution exhibits a universal algebraic scal
while the distribution is exponential for large values oft.
The exponential distribution depends on system details
particular, we have

F~t!;H t23/2 for small t

exp~2at! for larget,
~2!

where the constanta is system dependent. The scaling la
means that for nonhyperbolic systems with unstab
dimension variability, shadowing of numerical trajectori
can be expected only in short time because longer shado
times are exponentially improbable. A brief account of th
work has appeared recently@12#.

We shall present numerical results to support the sca
law ~2! and a physical analysis to explain it. The analysis
based on the similarity between the dynamics of shadow
and that of a random walk, briefly described as follow
When a trajectory moves on the attractor, it encounters b
hyperbolic region, where it converges to a true trajecto
and nonhyperbolic region with unstable dimension varia
ity in which the numbers of local stable and unstable dir
tions change. Thus, in hyperbolic region,Z ‘‘walks’’ ran-
domly toward the reflecting barrier because, in this ca
shadowing theory guarantees the existence of a nearby
trajectory @4#. Insofar as the trajectory is in a hyperbol
region, on average, the pointwise shadowing distance ca
adjusted in such a way that it decreases exponentially in t
toward the lower boundd. When a nonhyperbolic region
with unstable dimension variability is encountered, the s
den change of an expanding direction into a contracting o
or conversely, immediately destroys the consistency of
adjustment process, and the pointwise shadowing dista
tends to increase exponentially. In theZ space, there is an
excursion away from the reflecting barrier. The Fokk
Planck equation, which describes the evolution of the pr
ability distribution of the walker’s motion, in combinatio
with the proper initial and boundary conditions, can
solved to yield the scaling law~2!.

In Sec. II, we review the basic concepts essential for
derstanding the shadowing dynamics. In Sec. III, we deta
procedure to compute the shadowing distance and the s
owing time. In Sec. IV, we present numerical results w
two examples: a three-dimensional map that we have c
structed to specifically address the dynamics of shadowin
high-dimensional chaotic systems, and the kicked dou
rotor map@13# that has been a prototype model for addre
ing the issues of unstable dimension variability and shad
ing @7,9,14#. In Sec. V, we present a physical theory
explain the numerical observed scaling behavior of the sh
owing time. A brief discussion is presented in Sec. VI.
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II. BASIC CONCEPTS IN SHADOWING DYNAMICS

A. Shadowing in hyperbolic systems

The dynamics on an invariant set is hyperbolic if, at ea
point of the trajectory, the tangent space can be split i
expanding and contracting subspaces and the angle bet
them is bounded away from zero. Furthermore, the expa
ing subspace evolves into the expanding one along the
jectory and the same holds for the contracting subspace

The existence of a true trajectory near any numerical
jectory in hyperbolic systems can be understood by not
that, along the stable direction, the distance between the
and numerical trajectories decreases exponentially in forw
time, while along the unstable direction, the distance
creases exponentially in backward time. Given a numer
trajectory, a true trajectory can be found to stay in the nei
borhood of the numerical one. Specifically, consider the
of phase-space vectors that represent the difference betw
the true and numerical trajectories. Then, the stable com
nent of the vector can be constructed by following the d
namics in the stable direction starting from the initial con
tion, which decreases exponentially in forward time, wh
the unstable component can be located by following the
stable dynamics starting from the end point of the numer
trajectory, which contracts exponentially in backward tim
Combining the stable and unstable components of the dif
ence vectors along the numerical trajectory yields a true
jectory that stays withind @4#. All these can be done becaus
of the hyperbolic structure of the dynamics.

The shadowing lemma of Anosov and Bowen@4#, which
holds for hyperbolic systems, can be extended to nonu
formly hyperbolic systems@17#.

B. Shadowing in nonhyperbolic systems with tangencies

Shadowing of numerical trajectories in nonhyperbo
systems, for which tangencies are the sole source of non
perbolicity, is reasonably well understood@5,6#. Near a tan-
gency, the dynamics is neither expanding nor contract
much like what happens near a critical point of a on
dimensional map where the derivative is zero. Tangenc
encountered in low-dimensional chaotic systems are ty
cally quadratic. The breakdown of shadowing can thus
intuitively demonstrated by considering the logistic ma
xn1154xn(12xn). A numerical trajectory can be kicked ou
of the unit interval@0,1# and iterates tox52` if it comes
within aboutAd of the critical pointx51/2. For an ergodic
trajectory, the probability density function is smooth near t
critical point. The probability for the breakdown of shadow
ing is thus proportional toAd, which means that the time
required for this to happen is proportional tod21/2. Thus, if
the computer roundoff isd;10216, the length of the numeri-
cal trajectory for which shadowing is guaranteed is about8

iterations. For a continuous-time flow, this means that
merical trajectories containing less than 108 passings of a
Poincare´ surface of section, or about 108 oscillations, are
reliable. Such a time can be considered sufficient for ma
practical computations.
3-2
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C. Unstable dimension variability and breakdown
of shadowing

The breakdown of shadowing in the presence of unsta
dimension variability was first pointed out by Abraham a
Smale@15#, who constructed a simple ergodic invariant set
R D with two saddle fixed points,A andB, which have one
and two local unstable directions, respectively. Trajecto
in the invariant set can spend arbitrarily long times near e
point. Imagine a ball of initial conditions starting nearA,
which has a (D21)-dimensional stable subspace. As t
map is iterated, the ball of initial conditions is stretched in
a thin curve alongWu(A). The corresponding numerical tra
jectories lie withind of this thin curve. Consider a phas
space ofD53 dimensions. In the plane spanned by the t
stable directions atA, all computer-generated trajectories l
in a circle of radiusd centered atA. That both fixed points
are embedded in the same ergodic invariant set means
some time later, trajectories nearA visit a neighborhood ofB.
When this happens, the trajectories begin to separate a
the new unstable direction. Along this direction, numeri
and true trajectories separate from each other exponent
with time at a rate determined by the eigenvalue associ
with the fixed pointB. The numerical trajectories no longe
shadow the true trajectories atB. The switching fromA to B
is called aglitch.

A characteristic feature of a chaotic invariant set is that
infinite number of unstable periodic orbits are embedded
it. If the chaotic set has unstable dimension variability, ty
cally the infinite set of periodic orbits consists of subs
with distinct unstable dimensions. Each subset has an infi
number of orbits that are dense on the invariant set. Th
there are infinitely many glitches. In general, numerical t
jectories cannot be shadowed by any true trajectory for lo

III. PROCEDURE TO COMPUTE THE SHADOWING
DISTANCE AND TIME

A. Pointwise shadowing distance and brittleness

For nonhyperbolic invariant setL, a way to quantify the
violation of continuous shadowing is to examine the poi
wise shadowing distance. Let$pn%n50

N denote a numerica
trajectory, or apseudo-trajectory, of lengthN11. Because
of the computer roundoff, typically there is a small diffe
ence betweenpn11 and f(pn) for n50,1, . . . ,N21, where
f(pn) is the image of the pointpn under the true dynamics
Let d be an upper bound for all these errors along
pseudotrajectory, i.e.,upn112f(pn)u,d, for n50, . . . ,N

21. A true trajectory$xn%n50
N , on the other hand, satisfie

f(xn)5xn11, for n50, . . . ,N21. The true trajectorye
shadows the pseudotrajectory if uxn2pnu,e for n
50, . . . ,N. The quantityuxn2pnu is the pointwiseor local
shadowing distance@7,9#. The brittlenessB of a pseudotra-
jectory $pn%n50

N is the ratio of the shadowing distance ov
the magnitude of the one-step error,

B[
~shadowing distance!

~one2step error!
5

maxnupn2xnu
d

. ~3!
01621
le

s
h

o

hat

ng
l
lly
ed

n
n
-
s
ite
s,
-
g.

-

e

For hyperbolic systems, the pointwise shadowing dista
is on the order ofd because every pseudotrajectory is sha
owable, andB is of order 1. For nonhyperbolic system
however, the pointwise shadowing distance can reach
size of the entire attractor, andB can be on the order of the
inverse of the computer roundoff error.

B. Test brittleness

The brittlenessB generally is not computable, as the tru
trajectory is unknown. Thetest brittlenessis a first-order
approximation to the brittleness, which can be compu
without a precise knowledge of the true trajectory. Given
pseudotrajectory$pn%n50

N , the refinement procedure@5# de-
tailed below can be used to find an approximately true
jectory, say$yn%n50

N . The test brittlenessB is defined asB
[maxnupn2ynu/d. The idea of the refinement method is
correct the pseudotrajectory at each point in a proper wa
that the resulting trajectory is closer to a true trajectory~or
less noisy!. Let cn be the correction vector such thatyn5pn

1cn . For the corrected trajectory$yn%n50
N to be as close as

possible to a true trajectory, we requiref(yn)5yn115pn11
1cn11. Assuming that the correction vector is small, a fir
order approximation yields

pn111cn115f~pn1cn!'f~pn!1D•f~pn!•cn , ~4!

whereD•f(pn) is the Jacobian matrix of partial derivative
evaluated atpn . Let en5pn2f(pn21) be the error at thenth
step of the iteration. Thenf(pn)5pn111en11, which, when
substituting in Eq.~4!, yields

cn11'D•f~pn!•cn1en11 for n50, . . . ,N21. ~5!

This iteration scheme is unstable becauseD•f has unstable
eigenspaces at each point. Instead, we decompose the
gent space of the Jacobian matrixD•f(pn) into stable and
unstable subspaces. In the stable subspace, forward itera
yield the stable component ofcn , while in the unstable sub
space, backward iterations yield the unstable componen
cn . For a given pseudotrajectory of length (N11), the com-
bination of the results from the forward and backward ite
tions then yields the required correction vectorcn . These
correction vectors are used to approximate the correspon
pointwise shadowing distances.

The refined trajectory$yn%n50
N to be computed contain

(N11)D unknowns, while Eq.~5! contains onlyND equa-
tions. Thus, to guarantee a unique solution,D boundary con-
ditions must be specified for the refinement process. If th
are DS and DU stable and unstable directions, respective
along the pseudotrajectory, then we choosecN to be in the
DS-dimensional stable subspace atpN and c0 to be in the
DU-dimensional unstable subspace atp0, which together
give D additionalD boundary conditions@5#. These bound-
ary conditions guarantee that outside the time interval@0,N#,
the correction vectorc decreases to 0 exponentially, so th
the refined trajectory converges to the true one. In particu
sincecN is in the stable subspace ofpN , it converges to0
under the forward map for time beyondN, and likewise,
sincec0 is in the unstable subspace atp0, it will approach
3-3
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asymptotically to0, too, under the inverse map for time ste
preceding 0. Letcn5sn1un , wheresn andun are the stable
and unstable components ofcn , respectively. The boundar
conditions ares050 anduN50. Under these Eq.~5! yields
the following set of iterative schemes for solving the sta
and unstable components of the perturbation vector along
entire pseudotrajectory:

sn115Sp@D•f~pn!•sn1dn#,

un5Up@D•f21~pn11!•~un112dn11!#, ~6!

for n50, . . . ,N21, whereSp andUp are the projection op-
erators into the stable and unstable subspaces, respect
which can be determined by the spans of the stable and
stable subspaces at every point of the pseudotrajectory.
computation of the stable and unstable subspaces can be
ried out straightforwardly@16# by using the standard Gram
Schmidt orthonormalization procedure contained in, for
stance, the algorithm for computing the Lyapunov spectr
@18#. After all the correction vectors are computed, the t
brittleness is obtained:B5maxnucnu/uenu.

The refinement procedure relies on a continuous dec
position of the tangent space along the pseudotrajectory.
set of computed correction vectors~equivalently, the esti-
mated pointwise shadowing distances! are bounded by the
size of the chaotic invariant set in the phase space. A
result, the magnitude of the test brittleness should be of
order of the inverse of the computer roundoff. If there
unstable dimension variability, the stable and unstable p
jection matrices can be extremely ill conditioned, resulting
extraordinarily large correction vectors. Despite this dif
culty, we can take the viewpoint that very large values of
test brittleness suggest breakdowns of shadowing at var
points of the pseudotrajectory and, the refinement sch
provides a numerical way to find glitches on the chaotic s

IV. NUMERICAL EXAMPLES

A. A three-dimensional map

We have constructed a three-dimensional map for wh
in a convenient parameter range, there is a transition to h
dimensional chaotic attractors with two positive Lyapun
exponents and consequently severe unstable dimension
ability near the transition. The map reads

xn115cos~axn10.6ayn!,

yn1150.6azn cos~yn2zn!,

zn1150.1axn sin~12zn!, ~7!

wherea is the bifurcation parameter. Figures 1~a! and 1~b!
show a bifurcation diagram and the Lyapunov spectrum v
susa, respectively. In the parameter range considered, th
is at least one positive Lyapunov exponent~except for peri-
odic windows!. Transition to high-dimensional chaos occu
at a5ac'6.0, where the second largest Lyapunov expon
becomes positive. We thus expect severe unstable dimen
variability and consequently breakdown of shadowing to
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cur @19# for a near the critical valueac . The portraits of
typical low- and high-dimensional chaotic attractors a
shown in Figs. 2~a! and 2~b! for a54.0 anda58.0, respec-
tively. The low-dimensional chaotic attractor appears to ha
some visible structures of unstable foliations, while the hig
dimensional chaotic attractor looks apparently more ‘‘ra
dom’’ and space filling.

Figures 3~a!–3~c! show the evolution of the pointwise
shadowing distance for three different parameters. We

FIG. 1. For the three-dimensional map Eq.~7!, ~a! a bifurcation
diagram, and~b! a Lyapunov bifurcation diagram. We see that b
furcation to high-dimensional chaos with two positive Lyapun
exponents occurs ata5ac'6.0. Severe unstable dimension va
ability and the consequent breakdown of shadowing can be
pected fora nearac .

FIG. 2. For the three-dimensional map Eq.~7!, portraits of~a! a
low-dimensional chaotic attractor with one positive Lyapunov e
ponent fora54.0, and~b! a high-dimensional attractor with two
positive exponents fora58.0.
3-4



n
us
ze
e-
nt

is
va
ng
a
th
,

pe
a

ca
ca
rs

to
ig

s
on
h

rod

at

if-
re-

he

-

le,
ent
a
vior
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that the distances can be large fora56.0 ~a!. For a56.2 ~b!
and a56.4 ~c!, the distances are relatively smaller, as u
stable dimension variability is relatively less severe beca
the second largest Lyapunov exponent is not as close to
as in the case ofa56.0. The shadowing time can be conv
niently computed as the time interval during which the poi
wise shadowing distance stays less thane!1. With the
seemingly random variations in the pointwise shadowing d
tance, the shadowing time can be regarded as a random
able. To obtain the probability distributions of the shadowi
time, we construct histograms of the values of time interv
t during which the shadowing distance is less than
thresholde51025. Figure 4~a! shows, on logarithmic scale
the probability distributions of shadowing time fora56.0,
a56.2, anda56.4. We see that, for smallt values the
distributions tend to collapse onto a single line of slo
23/2, indicating a universal algebraic scaling. For large v
ues oft, the distributions are apparently exponential, as
be seen in the corresponding plots on a semilogarithmic s
in Fig. 4~b!. We have observed numerically similar behavio
for other values ofa nearac .

B. The kicked double-rotor map

We consider a physical system, the kicked double ro
which has been a paradigmatic model for addressing h
dimensional chaotic phenomena@13#, particularly the shad-
owing problem@7#. The kicked double-rotor map describe
the time evolution of an idealized mechanical system c
sisting of two thin, massless rods as shown in Fig. 5. T

FIG. 3. For the three-dimensional map Eq.~7!, the pointwise
shadowing distancesn computed from a trajectory of length 104 for
~a! a56.0, ~b! a56.2, and~c! a56.4. The dashed line corre
sponds the thresholde51025.
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first rod, of lengthl 1, rotates about the fixed pivotP1. The
second rod, of length 2l 2, pivots aboutP2, which moves. A
massm1 is attached atP2, and two massesm2/2 are attached
to each end of the second rod. The end of the second
(P3) receives vertical periodic impulse kicks of periodT and
amplituder. The rotors move in the horizontal plane so th
gravity can be neglected. Friction at the pivotsP1 andP2 is
proportional to the angular velocitydu1(t)/dt and
du2(t)/dt2du1(t)/dt with proportionality constantsn1 and
n2, respectively. Due to the periodic forcing, the set of d
ferential equations describing the double rotor can be
duced to the following four-dimensional map by using t
stroboscopic sectioning technique@13#:

S Xn11

Yn11
D 5S M•Yn1Xn

L•Yn1G~Xn11!
D , ~8!

whereX5(x1,x2)T, Y5(y1,y2)T, x1 andx2 are the angular

FIG. 4. ~a!, ~b! For the three-dimensional map Eq.~7!, probabil-
ity distributions of the shadowing timet for a56.0 ~thin solid
line!, a56.2 ~crosses1 dashed line!, anda56.4 ~circles 1 thin
solid line!. In ~a!, the distributions are shown on a logarithmic sca
indicating a universal algebraic scaling behavior with expon
23/2 for small values oft. In ~b!, the distributions are plotted on
semilogarithmic scale, revealing an exponential decaying beha
that depends on the system details.

FIG. 5. The kicked double-rotor system.
3-5



th

-

ng
tic

tive,
si-
le

n-

e
h

en-
e
is

is-
f the
of
uent
sub-

d-

n
t

ve
-

to
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positions of the rods at the instant of thenth kick, andy1 and
y2 are the angular velocities of the rods immediately after
nth kick. L andM are constant 232 matrices defined by

L5(
j 51

2

W je
l jT, M5(

j 51

2

W j

el jT21

l j
, ~9!

where

W15S a b

b dD , W25S d 2b

2b a D ,

a5
1

2 S 11
n1

D D , d5
1

2 S 12
n1

D D , b52
n2

D
,

l1,252
1

2
~n11n26D!, D5An1

214n2
2. ~10!

The functionG(X) is given by

G~X!5S c1 sinx1

c2 sinx2D , ~11!

where c15r l 1 /I , c25r l 2 /I , and I 5(m11m2) l 1
25m2l 2

2.
For illustrative purposes we fixn5T5I 5m15m25 l 251
and l 251/A2. These parameters yield

L5S 0.241 427 724 0.272 608 938

0.272 608 938 0.514 036 662D ,

FIG. 6. ~a! Bifurcation diagram and~b! Lyapunov exponent vs
the kicking parameterr for the double-rotor map Eq.~8!. Transition
to low-dimensional chaos with one positive Lyapunov expone
through a cascade of period-doubling bifurcations, occurs ar
'6.7. Bifurcation to high-dimensional chaos with two positi
Lyapunov exponents occurs atr'8.0, at which there is severe un
stable dimension variability.
01621
e

M5S 0.485 963 338 0.213 354 401

0.213 354 401 0.699 317 739D .

We choose the kicking strengthr as the bifurcation param
eter. A typical bifurcation diagram is shown in Fig. 6~a!, and
the Lyapunov spectrum of the attractor versusr is shown in
Fig. 6~b!. As r is increased, a cascade of period-doubli
bifurcations occurs, which leads to low-dimensional chao
attractors with one positive Lyapunov exponent atr'6.7. A
large periodic window occurs for 7.0&r&7,5. At r'8.0,
the second largest Lyapunov exponent becomes posi
leading to high-dimensional chaotic attractors with two po
tive exponents forr*8.0. We thus expect severe unstab
dimension variability and breakdown of shadowing forr
'8.0 @7,14,19#. As r is increased from 8.0, unstable dime
sion variability becomes less severe.

Figures 7~a!–7~c! show the pointwise shadowing distanc
sn as a function ofn, computed from a trajectory of lengt
104 on the chaotic attractor forr58.0, r58.5, and r
59.0, respectively. Because of the severe unstable dim
sion variability forr58.0, numerical trajectories cannot b
shadowed for appreciable lengths of time. This situation
reflected in the variations of the pointwise shadowing d
tance over many orders of magnitude. The huge values o
pointwise shadowing distance arise from ill conditioning
the refinement technique, due to the sudden and freq
changes in the dimensions of the stable and unstable
spaces along the trajectory. In contrast, forr58.5 andr
59.0, there are time intervals in which the pointwise sha

t,

FIG. 7. For the double-rotor map Eq.~8!, the pointwise shad-
owing distancesn computed from a trajectory of length 104 for ~a!
r58.0, ~b! r58.5, and~c! r59.0. The dashed line corresponds
the thresholde51025.
3-6
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owing distances are much less than 1, and the fluctuation
the distances are much smaller than those forr58.0, indi-
cating less severe obstructions to shadowing@7#. As shown
in Fig. 6~b!, for r58.5 and r59.0, the second larges
Lyapunov exponent lies away from 0 and, in fact, the dis
butions of its finite-time approximations have much sma
variance@7#.

Figure 8~a! shows, on a logarithmic scale, fore51025,
the histograms of shadowing time forr58.0 ~thin solid
line!, r58.5 ~crosses1 dashed line!, and r59.0 ~circles
1 thin solid line!, respectively. We observe that fort,td
'102, the distributionsF(t) appear to be algebraic, whil
for t.td , F(t)’s decrease rapidly witht. The decaying
behavior ofF(t) for t.td appears to be exponential, a
shown on a semilogarithmic scale in Fig. 8~b!. The exponen-
tial decay is system dependent in the sense that its rate
pends on the parameterr. In particular, the rate is large fo
r58.0, indicating that it is highly improbable to have a lon
shadowing time, due to the severe unstable dimension v
ability at this parameter value. Asr is increased from 8.0
the degree of unstable dimension variability is reduced
that the exponential decay inF(t) becomes slower. Again
the remarkable feature is that the algebraic decay for smat
appears to beuniversal with the scaling exponent23/2,
which holds for many other values ofr in the interval
@7,8,10# that we have examined.

V. PHYSICAL THEORY FOR STATISTICS
OF SHADOWING TIME

To explain the universal and nonuniversal features
shadowing, as exemplified by Figs. 4 and 8, we conside

FIG. 8. ~a!, ~b! For the double-rotor map Eq.~8!, probability
distributions of the shadowing timet for r[r058.0 ~thin solid
line!, r58.5 ~crosses1 dashed line!, and r59.0 ~circles 1 thin
solid line!. In ~a!, the distributions are shown on a logarithmic sca
indicating a universal algebraic scaling behavior with expone
23/2 for small values oft. In ~b!, the distributions are plotted on
semilogarithmic scale, indicating an exponential decaying beha
01621
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random walk model. To refresh, a trajectory encounters b
approximately hyperbolic regions and regions with glitch
The shadowing dynamics in the hyperbolic regions
equivalent to a random walk toward the reflecting barr
corresponding to the computer roundoff. As we have
scribed, an approximation of the true trajectory can be fou
with a refinement technique that adjusts the points on
trajectory in a consistent manner along the stable and
stable directions. As a result, insofar as the trajectory is i
hyperbolic region, on average, the pointwise shadowing
tance decreases exponentially with time toward the low
boundd. When a glitch occurs, the consistency in the traje
tory adjustments, which can be achieved in hyperbolic
gions, is immediately destroyed, causing the pointwise sh
owing distance to increase in an exponential manner. In
walker’s space, it is equivalent to an excursion away fro
the reflecting barrier.

We are thus led to consider the following model:

sn115wnsn , ~12!

wheresn stands for the shadowing distance at timen, andwn
is a random variable that describes the expansion or con
tion of the local shadowing distance at timen. Introducing a
new variableyn5 log10sn , we obtain

yn115yn1n1zn , ~13!

wheren[^ log10wn& is the drift of the random walk andzn
5 log10wn2^ log10wn& is a zero mean random variable. Ap
proximately @20#, we can write down the Fokker-Planc
equation

]P

]t
52n

]P

]y
1

D

2

]2P

]y2
, ~14!

whereP(t,y) is the probability distribution for observing th
walker at distancey at timet, and the diffusion coefficient is
given by D5^zn

2&. For computing the probability distribu
tion of the shadowing time, the maximum relevant pointw
shadowing distance isyth5 log10e, the threshold distance
below which shadowing is considered to hold. There is th
an absorbing boundary condition atyth ,

P~ t,yth!50. ~15!

The shadowing distance cannot be smaller than the comp
roundoff d, which stipulates a reflecting boundary conditio
at log10d:

FJ~ t,y![2nP1
D

2

dP

dyGU
y5 log10 d

50. ~16!

Assuming the walker starts at an arbitrary place log10d,y0
,yth at t50, we have the initial condition

P~0,y!5d~y2y0!. ~17!

Under these boundary and initial conditions, the Fokk
Planck equation can be solved@21#, which gives the follow-

,

r.
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ing probability distribution for the first-passage time of t
walk acrossyth ~the shadowing time!:

F~t!;
t23/2

A2pD
expS 2

n2t

2D D , ~18!

where the proportional constant depends on the choice o
initial conditiony0. For small values oft, the dependence o
F(t) on t is mainly algebraic with the universal scalin
exponent of23/2. For large values oft, the exponentially
decaying behavior inF(t) dominates with the rate given b
a5n2/(2D). These are the scaling results in Eq.~2!. The
dependence of the exponential rate on system details ca
assessed by computing the dependence of the diffusion
rametersn and D on a system parameter. We find that, a
proximately, the average drift depends inversely on the
rameter variation:unu;1/(r2r0), for r.r0'8.0, and the
diffusion coefficientD is relatively constant, as shown i
Fig. 9.

A few remarks are in order.
~1! The average driftn, which is a key parameter in th

random-walk model, decreases asr is increased fromr0. In
fact, the value of the average drift appears to be maxim
when unstable dimension variability is most severe. This
expected from Figs. 7~a!–7~c!, the plots of the logarithmic
pointwise shadowing distance, or the displacement of
random walker for different values ofr, where we see tha
the apparently random evolution of the distance indeed
hibits much larger drift forr5r0, compared with other val-
ues ofr. Dynamically, this happens due to the existence
the maximally possible number of glitches on the attrac
for r5r0 when unstable dimension variability is most s
vere. As a result, the pointwise shadowing distance suffe
relatively large number of expanding phases as compa
with the number of contracting phases experienced in

FIG. 9. For the double-rotor map Eq.~8!, ~a! draft v and ~b!
diffusion D coefficients.
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hyperbolic regions, leading to an appreciable amount of d
in the random walk model. This is somewhat different fro
the diffusion model used in Ref.@9#.

~2! The solution to the Fokker-Planck equation, under
boundary and initial conditions, gives satisfactory explan
tions for our numerical results. The setting of the initial a
boundary value problem is in fact quite standard@21#, and it
also appears in other contexts such as noisy on-off inter
tency @23,24#. Our results are completely consistent wi
those in that context.

~3! Between the universal scaling inF(t) ~algebraic! and
the nonuniversal scaling~exponential! regimes, there is a
crossover regime int where both the algebraic and expone
tial contributions are important. This is the so-called ‘‘shou
der regime’’ in noisy on-off intermittency@23#. The cross-
over time is approximately given bytd'D21@ ln(e/d)#2,
which defines the time scale of diffusion@24#. There is an-
other time of interest, which is the drift timeunu21 ln(e/d).
These represent the typical times for the shadowing dista
to reach the threshold from the level of computer round
due to diffusion and drift, respectively.

VI. DISCUSSION

In summary, we have uncovered universal and nonuniv
sal features in the shadowing dynamics of nonhyperb
chaotic systems with unstable dimension variability@22#.
Our results provide a fairly detailed understanding of t
fundamental problem of shadowing in terms of statisti
characterizations. Our theoretical explanation suggests
the shadowing problem shares the same dynamical me
nism as that for on-off intermittency under noise.

The problem of shadowing is closely related to a mo
fundamental question: is mathematical modeling a mean
ful approach for high-dimensional chaotic systems with u
stable dimension variability? The relation between shado
ing and modeling can be stated more precisely@25#.
Generally, a necessary requirement for a model is robust
under small perturbations. One can generate outputs f
two versions of the model using slightly different parame
values or initial conditions. Chaotic processes depend se
tively on both. A model is considered robust if the sets of
possible outcomes of two slightly different versions of t
model are similar. Difficulties arise when trajectories fro
one version of the model are not shadowable by trajecto
from another, as occurs in the presence of unstable dim
sion variability. In such cases, the model may be useless
making detailed predictions about the behavior of particu
initial conditions, although statistical predictions may still b
possible@14#. The results of this paper shed light on for ho
long one can expect solutions from a model to be appro
mately valid@26#.
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@1# Because of the sensitivity of a chaotic system to initial con
tions and parameters, the existence of the computer roun
error means that two trajectories starting from exactly the sa
initial condition will diverge exponentially from each other i
time. Shadowing of a trajectory by another one is possible o
when they start from slightly different initial conditions.

@2# The first paper, to our knowledge, addressing shadowing
statistical averages is T. Sauer, Phys. Rev. E65, 036220
~2002!, which deals with nonhyperbolic chaotic systems w
unstable dimension variability.

@3# A common situation where statistical averages depend on n
is when the system is in a periodic window, where a perio
attractor and a nonattracting chaotic invariant set~chaotic
saddle! coexist in the phase space, For small noise, a trajec
can remain in the neighborhood of the periodic attractor ind
nitely. As the noise amplitude exceeds a critical value,
trajectory on the periodic attractor can be perturbed away fr
it to visit the chaotic saddle. As the saddle is nonattracting,
trajectory will go back to the original periodic attractor, b
kicked away again, and so on. Noise thus induces an inter
tent behavior. It has been shown recently that statistical a
ages associated with the intermittency scale with the noise
plitude algebraically@Y.-C. Lai, Z. Liu. G. Wei, and C.-H. Lai,
Phys. Rev. Lett.89, 184101~2002!#.

@4# D.V. Anosov, Proc. Steklov Inst. Math.90, 1 ~1967!; R. Bo-
wen, J. Diff. Eqns.18, 333 ~1975!.

@5# S.M. Hammel, J.A. Yorke, and C. Grebogi, J. Complex.3, 136
~1987!; Bull. Am. Math. Soc.19, 465~1988!; C. Grebogi, S.M.
Hammel, J.A. Yorke, and T. Sauer, Phys. Rev. Lett.65, 1527
~1990!; T. Sauer and J.A. Yorke, Nonlinearity4, 961 ~1991!.

@6# S.N. Chow and K.J. Palmer, J. Dyn. Differ. Equ.3, 361~1991!;
S.N. Chow and E.S. Van Vleck, SIAM J. Sci. Comput.~USA!

15, 959 ~1994!.
@7# S.P. Dawson, C. Grebogi, T. Sauer, and J.A. Yorke, Phys. R

Lett. 73, 1927~1994!.
@8# S.P. Dawson, Phys. Rev. Lett.76, 4348~1996!; E.J. Kostelich,

I. Kan, C. Grebogi, E. Ott, and J.A. Yorke, Physica D109, 81
~1997!; E. Barreto and P. So, Phys. Rev. Lett.85, 2490~2000!.

@9# T. Sauer, C. Grebogi, and J.A. Yorke, Phys. Rev. Lett.79, 59
~1997!.

@10# Y.-C. Lai and C. Grebogi, Phys. Rev. Lett.82, 4803 ~1999!;
Y.-C. Lai, D. Lerner, K. Williams, and C. Grebogi, Phys. Re
E 60, 5445~1999!.

@11# While Lyapunov exponents are asymptotic quantities defi
with respect to the natural measure of the chaotic attractor,
relevant entities that determine the shadowing dynamics
the statistical characteristics of the distribution of the fini
time Lyapunov exponents. Say one chooses an ensemb
random initial conditions, computes the exponents in a fin
time, and then constructs histograms of these exponents.
mean values of the histograms are the asymptotic expone

@12# Y. Do, Y.-C. Lai, Z. Liu, and E.J. Kostelich, Phys. Rev. E67,
R035202~2003!.

@13# C. Grebogi, E. Kostelich, E. Ott, and J.A. Yorke, Physica D25,
347 ~1987!; F.J. Romeiras, C. Grebogi, E. Ott, and W.
Dayawansa,ibid. 58, 165 ~1992!.

@14# Y.-C. Lai, C. Grebogi, and J. Kurths, Phys. Rev. E59, 2907
~1999!.
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@15# R. Abraham and S. Smale, Proc. Symp. Pure Math.14, 5
~1970!.

@16# Y.-C. Lai, M. Ding, and C. Grebogi, Phys. Rev. E47, 86
~1993!.

@17# A. Katok and B. Hasselblatt,Introduction to the Modern
Theory of Dynamical System~Cambridge University Press
Cambridge, England, 1995!.

@18# G. Benettin, L. Galgani, A. Giorgilli, and J.-M. Strelcyn, Mec
canica15, 21 ~1980!.

@19# Theoretical and numerical investigations on the character
tion of the transition to high-dimensional chaos by unsta
periodic orbits indicate that the transition is typically accom
panied by severe unstable dimension variability@R.L. David-
chack and Y.-C. Lai, Phys. Lett. A270, 308 ~2000!#, which
also leads to a smooth variation of the Lyapunov expone
~except the largest one! when they cross zero from the negativ
side @M.A. Harrison and Y.-C. Lai, Phys. Rev. E59, R3799
~1999!#. In fact, a quantitative measure for the degree of u
stable dimension variability can be defined based on unst
periodic orbits, demonstrating that the variability is most s
vere at the transition@Y.-C. Lai, ibid. 59, R3807~1999!#.

@20# Strictly, the random-walk model can be solved by the Fokk
Planck equation whenZ is a zero-mean, Gaussian random va
able. For our shadowing problem, numerically we find that
distribution of Z is approximately Gaussian~by definition Z
has a zero mean!.

@21# C.W. Gardiner,Handbook of Stochastic Methods~Springer-
Verlag, New York, 1997!; H. Risken,The Fokker-Plank Equa-
tion ~Springer-Verlag, Berlin, 1989!.

@22# It is useful to discuss our result in relation to the extend
shadowing lemma in nonuniform hyperbolic systems. Supp
that the mapf:R D→R D is continuously differentiable andS
is the invariant set of interest. Nonuniform hyperbolicity is
‘‘weaker’’ type of hyperbolicity. In particular, for a diffeomor-
phismg:M→M on a compact manifoldM, the invariant set
S is nonuniformly hyperbolicif for every xPS the tangent
spaceTx can be split continuously, i.e.,Tx5Ex

s
% Ex

u and, for
sufficiently smalle.0 there is apositive function Ce and l
,1,m such that for every integerk, the following hold:~i!
Ce@gk(x)#<eeukuCe(x), ~ii ! uD•gn(x)•yu,Ce@gm1k(x)#mnuyu
for yPEx

s , ~iii ! uD•g2n(x)•yu,Ce@gm1k(x)#lnuyu for y
PEx

u , and~iv! the angle between stable subspace and unst
subspace is bounded away from zero. The key feature ass
ated with nonuniform hyperbolicity is that the positive numb
K for the definition of hyperbolicity is replaced by a positiv
function. The shadowing lemma in Ref.@17# guarantees the
existence of long shadowing trajectories for nonuniformly h
perbolic dynamical systems. The nonhyperbolic systems s
ied here, i.e., dynamical systems with unstable-dimension v
ability, violate one of the essential conditions fo
hyperbolicity: the continuous splitting of the tangent space
tween the stable and unstable subspaces. Thus the shado
lemma in Ref.@17# does not hold for these severely nonhype
bolic systems. For them, shadowing of numerical trajector
even of relatively short lengths, cannot be expected. Our
covery of the combination of algebraic~for short time! and
exponential~for long time! behaviors in the statistical distribu
tion of the shadowing time answers the question ‘‘for how lo
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a numerical trajectory can be expected to be valid?’’ in a qu
titative way.

@23# See, for example, J.F. Heagy, N. Platt, and S.M. Hamm
Phys. Rev. E49, 1140 ~1994!; D. Marthaler, D. Armbruster,
Y.-C. Lai, and E.J. Kostelich,ibid. 64, 016220~2001!.

@24# A. Čenys, A.N. Anagnostopoulos, and G.L. Bleris, Phys. Le
A 224, 346 ~1997!.

@25# This insight was first conceived by J.A. Yorke~private com-
01621
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munication!. The modeling problem was investigated in det
in the context of coupled chaotic oscillators in Ref.@10#.

@26# While model solutions may not be valid for long time, th
model may still be useful for yielding statistical or ergod
averages of physical quantities of interest@14#. An interesting
question is how to identify situations in which models do n
even yield useful statistical averages of physically relev
quantities@2,3#.
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